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. ABSTRACT
e Ty
j This paper is concerned with iterative procedures for the monotone com-
] These—
::: plementarity problem. Qur iterative methods consist of finding fixed points
. of appropriate continuous maps. In the case of the linear complementarity
_ problem, it is shown that the problem is solvable if and only if the sequence
.
L of iterates is bounded in which case summability methods are used to find a
- solution of the problem. This procedure is then used to find a solution of the
_ . nonlinear compler.2ntarity problem satisfying certain regularity /conditiOns
34 e )
% for which the problem has a nonempty bounded solutlon set. /v?zyﬂ’wb‘f :
s lore be Tlru W’T 05 .) E—
;‘ AMS(MOS) C&ssrﬁcat:t»n 90C30, 90C25 '
Wy
‘“' Keywords: Monotone operators, Complementarity problem
18
N Work Unit Number 5: Optimization and Large Scale Systems l
Sponsored by the United States Army under Contract No. DA AG29-80-C-
:' 0041. This material is based on work sponsored by National Science Foun- '

dation Grants DCR-8420963 and MCS-8102684.
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SIGNIFICANCE AND EXPLANATION

Fixed point iterative procedures are defined which use summability the-
ory for the solution of the monotone complementarity problem. Mangasarian
& McLinden have established the existence and boundedness of solution set
under certain regularity conditions. In this paper we provide a constructive

procedure to obtain a solution under these conditions.
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FIXED POINT METHODS

FOR THE COMPLEMENTARITY PROBLEM

P. K. Subramanian

1. Introduction

‘We are concerned in this paper with the complementarity problem, viz., that
of finding a 2, (if it exists) such that F(z,) > 0 and such that zT F(z,) = 0.
Here F is an operator from R" to R"™ . In particular, we are concerned

with the case when F is monotone, that is
(z-y)T(F(z) - Fy)) 20 vz,ye R

The operator F is strongly monotone if there exists a positive real number A

such that
(z- y)T(F(z) - F(y)) > Az - y||%.

When F is an affine map, F(z) = Mz+gq, we shall refer to the complementar-
ity problem as the linear complementarity problem and write LCP(M, g)in

this case. Otherwise we shall refer to the complementarity problem as the

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based on work sponsored by the National Science

Foundation Grants DCR-8420963 and MCS-8102684.
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In the case of LC P(M, q), when M is positive semidefinite, if the prob-

lem is feasible, that is there exists £ > 0 such that Mz + ¢ > 0, the problem

is solvable [Eaves, 1971]. This is not the case for NLC P(F) ([Megiddo,

1977}, [Garcia, 1977]). However, for € > 0, if we consider the Tihonov reg-

ularization F, := F + eI then the corresponding problem NLC P(F,) has a

unique solution since F, is strongly monotone [Karamardian, 1972]. When

e — 0, then z., the solution of NLC P(F,), converges to the least two-norm
solution of NLC P(F) , provided NLC P(F) is solvable [Brézis, 1973].

A solution of NLCP(F) is also a fixed point of the map
z — (z- F(z))+ := max {0,z — F(z)}.

The principal aim of this paper is to consider iterative procedures to find such
fixed points. We shall show that in the linear case the sequence of iterates
is bounded if and only if LCP(M, q)is solvable. When this is the case, we
use summability methods to obtain a solution of the problem. Although
feasibility of the monotone NLC P(F) does not imply its solvability, it is a
theorem of Mangasarian & McLinden [1985] that when a regularity condition
such as the distribute Slater constraint qualification is satisfied then the
solution set is bounded. We show how the iterative procedure for the linear
case may be adapted to find a solution in this special case.

We briefly describe the notation used in this paper. We use R" for the
space of real ordered n-tuples . All vectors are column vectors and we use the

Euclidean norm throughout. Given a vector z, we denote its t** component




by z;. Wesay z > 0if z; > 0Vi. The nonnegative orthant is denoted by
R" .
We use superscripts to distinguish between vectors, e.g., !, 12 etc. For
& R" z7T indicates the transpose of z, Ty their inner product. Occa-
sionally. the superscript T will be suppressed. All matrices are indicated by
upper case letters A, B, C etc. The it* row of A is denoted by A; while its
thcolumn is denoted by A,. The transpose of A is denoted by AT.
Given NLCP(F) , we define the feasible set and solution set by S(F)
and S(F) respectively, that is,
S(F)={z e R : F(z) e R}}
S(F)={z€ S(F) : zTF(z) = 0}.
In the case of LCP(M, g}, we shali denote these sets by S(M, ¢} and S(M,g)

respectively. Finally the end of a proof is signified by .

2. Fixed point methods

We begin with the well known notion of a contraction mapping.

2.1 Definition. Let P: D C R" — R™ . We say P ts Lipschitzian with

modulus L > 0 if
| P(r) - P(y)| < Lliz -yt Vz,y € D.

When L < 1 (L < 1) we say P s non-ezpansive (contractive) .
The following Theorem is classical; see e.g., [Ortega and Rheinboldt,

1970, page 120].
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2.2 Theorem. (Banach’s contraction mapping princple). Let P: D C
R* — R" and let Dy be a closed subset of D such that PD, = {P(z) :
T € Dr_;} C Dy. If P is a contraction mapping on D, with modulus L, then
P has a unique fized point T sn Do. Further, for any point z° in Dy, the
sequence {z*} where z¥*! = P(z¥), converges to T with the jollowing linear

rate :

llz*+* — =]

—— < L.
% — Z|

The content of the following proposition is well known. We state it in
following form for later use and furnish a proof for the sake of completeness.

2.3 Proposition. Let F: D C R* — R" be monotone and Lipschitzian
with modulus L. Suppose that € > 0, a > 0 and e < 1. Then the

projection map IP defined by

P(z) = {1: - a(F(z) + ez)}+, zeD

is also Lipschitzian with modulus k(a) = /(1 - a€)? + (al)?. If a <

2e/\€? + L2, then IP is a contraction and k attains its minimum value

kmin(@) = L/V L2+ €% for a=c¢/L*+ €2

Proof

We have
[IP(z) - IP(y)||>

I{z — a(F(z) + ez)}, - {y - a(F(y) + ey)}+||2

< Iz - a(F(z) +2)) - {u— a(Fl0) + en) I

s e oy o ——

.-~
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since projection on R" is non-expansive. Hence,

iP(z) - P(y)i% < [i(z - v)() — €a) - a(F(z) - F(y))}i®

i

Iz — ylI> (1 - ag)? + o*| F(z) - F(y)!*
~2a(1 - ae)(z - y)(F(z) - F(y)).

Since ae < 1and < F(z) — F(y), £ - y > > 0 from the monotonicity of F,

iP(z) - P)I* < =z -y {(1 - ae)® + (al)?}.

The other claims about k(a) are easy to verify. |

2.4 Theorem. Let F : R* — R" be monotone and Lipschitzian with
modulus L. Let {c,} be a sequence of positive reals, e, | 0. Forn =1, 2,--

let

Pa(z) = {z - an(F(z) + €nz)},

and form=1, 2,--- andz € R" let

m times
Suppose further that
€ L
an = _‘—n_ kn = 6n = en(l - kn).

€2 + L?’

2 2’
VL +e€2

Forn=1,2, ---, let T" be defined by

" = z(n,m), where ||z(n,m+ 1) - z(n,m)|| < 6,.
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Then the sequence {||z"||} is bounded if and only if NLCP(F) ts solvable

3_} and in this case, T, — T, the least two-norm solution of NLCP(F) .

Proof

3_‘ From Proposition 2.3, IP, is a contraction with modulus k, < 1. By the
3
.f"
\

contraction mapping principle, given any z".

= lim P — 2", P,(z") = 2".

| 300
Note that z" solves NLC P(F + €,I) uniquely. Since, by definition,
:
? P, (z(n,m)) = z(n, m + 1)
b ]
we have

én > |lz(n,m + 1) — z(n,m)|| > [[z(n,m) - 2"|| — [|z(n,m + 1) - 2"
> and
> llz(n,m + 1) — 2" = [|[Pa(z(n,m) — Pp(2")]] < kyn - [lz(n,m) - 2"
'ﬁ it follows that
bn > a(nym+ 1) = z(nm)| > (1= kn) [z(n,m) - 27|

o and that

IZ" - 2"|| < €qp.

4
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The conclusions about {z"} follow from [Brézis, 1973] (see also [Subrama-
nian, 1985]). |

We remark that the last Theorem is a two-step process in the sense that
for a given £,. the contraction IP, is iterated m times until z(n,m) is close
enough to the solution z" of NLCP(F + €,). One then takes a smaller
€n, and the process repeats. Our aim now is to prove convergence for an
algorithm which combines both steps into a single step. We shall need the
following notions from the thecry of summability.
2.5 Definition. An infirite matriz A = (Ay;), 4, j =1, 2,---, is said to be

convergence preserving if for any sequence {z,}, the sequence {y, defined
by
o0
j=1
is well defined and limz, = limy,. We call {yn} the A-transform of {z,}
and write y, = A({zn}).
The following Theorem is classical. Its proof may be found for instance
in [Peyerimhoff, 1969].
2.7 Theorem. (O. Toeptlitz). Aninfinite matriz A = (Ai;), 1, 7 =1,2,---
1s convergence preseruving if and only if
(1) Z;’C:I lAij| = o0y exists,
{o0:} 1s bounded,

(2) “mi(zoc

s=1 A,‘,‘) = 1.

(3) lim, A,;, = 0.
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We are now ready to prove the principal theorem of this paper.

2.8 Theorem. Let M be a positive semidefinite matriz. Assume that that

the sequences {a,} and {€,} of positive reals are such that

3\

WK

a, diverges,

E]
il
—

G, converges,

[]8

n=1 (2.9)
[ o]
Z QnEn converges and
n=1
En <1, Po=o2 |0
€n
Suppose that k 1s the smallest positive integer satisfying
20, +2p, < L:= (2.10).
v I )

Let B = (B;j) be the infinite matriz whose n** row B, ts defined by

Ql+k O24k Qn+k
Bn:( Sn ’ sn y Ty Sn a03"'

where S, = Z;‘:l @;+k. Let 2° =0 and having =", determine z"*! from

Let {y™} be the B-transform of {z"}, that is

s (i a,.+sz> (2.12).
=

Then S(M, q) # 8 <=> {z"} is bounded. When this condition holds,

y* — y* € S(M, q).
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]

Assume that k satisfies (2.10). For notational convenience, we shall write

Op = Gnik, €En =En+k and p, = Pnrk-

Rl
1 _a
‘aas

g

s

'y i,]',- “" i

Obviuosly, the sequences {an}, {en} and {p,} also satisfy the conditions

(2.13). We shall write

Fr=Mz+gq, Frz=Fz+c¢c,z.

I Thus we can write (2.11) in the form
:(: "t = {(1 ~ Qpep)z" - anFIn}+ (2.13).

We first assume that {z"} is bounded and show that in this case y" —

e y* € S(M, q) so that 5(M, ¢q) # 0. J
\

)

* Assume then that {z"} is bounded. Clearly, 2K, > 0 and K; > 0 !

|
> such that

i Iz < K.

b

oo |Fpz™|| = ||[Mz" + g+ epz™i!

b

: < (1 + MY - flz™ ] = gl

o < (1+ M) - Ky +llg}

= K.
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i
o
i
0
o Let z € R7 be arbitrary but fixed. Then from (2.13) we have
B W
32 2 2l = (2" - an(Faz™)), - 2]
" < (" - 2) - an(Fa" + enz™)|?
K < (=" - 2)? - 2an(Fa")(a" - z)
i — 2anepr™ (2" - z) + a1 K2. (2.14)
%
24 Since M is positive semidefinite we also have
(Fz™)(z" - z) > (Fz)(z" - x).
24
) Ks = sup [l"] - " - .
o "
y
-'z' From (2.14) we now get

2an(Fz)(z" — ) < ||lz" — z||® - ||z"F - 2|2 + 2006, K3 + a2 K2.
Summing this from 1 to k we obtain
k k k
2(Fz) z an(z™-z) < |lz'~z|? - |2*+! —z||? +2K> Z onen+ K32 Z al.
=1 n=1 n=1
Divide this last inequality by Six and let k — oo. From the assumed prop-
erties in (2.9) of the sequences {an}, {¢,} and from the definition of {y"},

we now have

limkinf < Fr,z-y*>>o0.

e -, et et et am .ty ey - e -‘:.
.‘(-\-‘g'- e ‘-'},.w} RS S I WS R .{:-'_'- . ) }\ '-}‘v} RESES .‘ "‘\‘ N ¢ﬁ- \\ :
ey e, S LY -~ \ o
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\‘
= Since y" is a convex combination of z!, z%,---,z" it follows that {z"}
el

;; bounded = {y"} is bounded. Hence {y"} has a limit point y~ for which

-"

e

: <Fz,z—-y">2> 0.

i
i Since € R™ was arbitrary, y* solves LCP(M, g) . This completes our prool
\.:.

that

8 {z"} bounded = S(M,q) # 0.

>

KUy Next we prove y* — y*.

Since S(M, ¢) # 0, choose z € S§(M, q) arbitrary but fixed. By
::: Theorem 2.4.2, 2 satisfies

v <Fz",z"-2>2 0 (2.15)
i

3 since z" > 0. From (2.13) and (2.15) we have

Jem ! — 2|)* < fi(z" - 2) — an(F2" + €a®)|[*

'l' < |l — 2)|% — 200 (Fz"™)(z" — 2)

N — 2apen z™(z" - 2) + @2 K}
[)

i

< Jlz™ - 2||* + 2anen 12" (2" - 2)| + 2 K3.

’i\:

"';j Define 8,(2) by
o

2 Bn(2) := 20men ||l27]] 12" — 2] + o2 K32 (2.16)

and we now have
izt — 22 < flz™ - 22 + Ba(2) (2.17).
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Let S denote S(M, gq) and let
2" = PE(.’E"')

We are going to show that Jz* such that

2t — 2%, Yyt — 2.

From (2.17) and the definition of 2",
“I"+l _ zn-H”2 S ”zn+l _ zn“2 S ||.1:" _ zn”2 + ﬂn(z)-

Since Y_, Bn(2) converges, by [Cheng, 1981, Lemma 2.2.12], we can conclude

that

liz® — 2"|| converges. (2.18)

By parallelogram law, for m > 0,

27+~ 2P| = 2™ = 2 4 gt — g
Rt i [
Since S is convex, (z" + 2"*t™)/2 € §. Also, 2"*™ is the closest point to
z**t™ in S. Hence,

Jn+™ = 2|2 < 22 - 2| - —glemtm - R (2a9)

Letting z = z™ in (2.17) and noting that 2" is the closest point to z" in

S, it follows that B,(z") < Bn(z). Now let z = z" in (2.17) and use

induction to get

n4+m
lzn ™~ 2P < 2t - 2P+ ) Bi(z),  m o>

j=n
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Substitute this in (2.19) and we have
R T &
n+m
—2femtm - T2 ) Bi(z). (2.20)
1=n

From (2.18) and the fact }_  f8n(z) converges, we have by letting n,m — oo

n (2.20) that

so that {z"} is Cauchy. Since S is closed, 32z* € S such that z" — z*.
We shall now show that y* — 2= as well.

Since {y"} is also bounded, let y* be any of its limit points. Assume
that the subsequence y™ converges to y*. From our proof earlier, y* € S.

Observe that
Z=Pg(dd) = <2 -2,y -z2>< 0. (2.21)

Muitiply (2.21) by 0'12 and sum from j =1, 2,---, n; to get

@a,w-za Za, _z:> < o

Divide the last inequality by S2, to obtain

1 o~ 1 o
<y"k -5 a2, y* - " Za,-z’> < 0. (2.22)
Rk j_l Rk 1=1
> Notice however that
Y -
ko= a2’
; e =g (L o)
)=1
"u
e
<
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is simply a subsequence of the B-transform of {z"}, that is of
{¢"} = B({="}).

Since B satisfies all the conditions of Theorem 2.7, it is a convergence pre-
serving matrix. However, z* — 2* so that both £" and ™ also converge

to z*. If we take limits as k — oo in (2.22), we get
<yt_zi, y*_z*>s 0

so that y= = 2*. But y* was any arbitrary limit point of {y"}. Hence

y® — z". This completes our proof that
{z"} bounded == S(M,q) # 0 and y" — z* € S(M, q).

We now prove the converse, that is we shall assume that S(M, ¢q) # 0
and show that {z"} is bounded.

Recall from (2.10) that k satisfies

VI + 2 < L = 1+nMn

Hence there exists 0, 0 < ¢ < 1/2 for which

f— 1
2p P

VIR < gy Mn

The function f(r),

r

f(r):= r(1 + o)1 + IM]) + llql
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3

is strictly increasing in [0, oo0], lim, f(r) = L,. Thus 37 > 0 such that for

;‘{::v
N r > T,
G
2::' o _ _

O V20, =20k < f(F) < f(r).
fon,
5 Since p, | 0 and p,,; = pn, we haveforall n > 0 and r > 7,
5
152
e

i V20n +20n < f(F) < f(r). (2.23)
.'-'
:'{. By assumption, S # 0. Let z = P5(0), that is z is the least two-norm
5

solution of LC P(M, q). Define

_ 1
r = max (¥, =llz|)+ 1.
o
Our aim is to show that
”zn_zH < Vn > 0,

wh that is {z"} is bounded and this would complete our proof. |
My We use induction.
Forn=0, |Iz0 - 2| = ||lz|| < or < .

1 Suppose now that ||z" — z|| < r. Let u, = |z" — 2z||. From (2.13),

n+l _ ZH2

il

. #3;4»1 Iz

-
¥l
IA

< g™ - 2l2 - 2apep 2™ (2" - 2)

~2an(Fz")(z" - 2) + a2 Fe" + cnz™[2.  (2.24)

(R 7L
N, o i i T TN T W M e ey e ey “x
o3 ¥ s h ,'i Fam - et TN
B oo r s R R
: ,'.-.-"'- is "rw- SR
AR LY &

RN v




- T TTvIN
i P -

el Rt

TR

vy

SR
e

,.,W_.
o

-

HA

o

PRIE
At o A AN

"""44_
P v % ¢

B R -y
2%
sl N o e

-

ﬂ,} “i

f -h }’E“

S
R

Tl

*\

16

Since z € S, (Fz")(z" - 2) > 0. Also if pns1 < pn, we are done. So

assume pp41 > Wy . From (2.24) we thus get

20060 2™ (2" ~ 2) < oi||Fz" + €nz"|?,

that is
*(z" - 2) < %’HF:" + enz™|%.
Since
2™ < llz™ ~ 2| + || 2|
< r+or
= (1+ o)r,
we have

IFz™ + enz™| < [IMz™ + gl| + €nljz"||
< Ml + gl + ll=™]

< (L+o)r-(1+[IM]) + gl

From (2.25) we now get

*(z" - 2) < Pre2

2
(z" - z)(z" - 2) < %’152 ~ z(z" - 2)
< Pmg? gzl - ||z - 2

Ty

(2.25)

(2.26)

wti'
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Rewriting this last inequality,
pl < e,,ﬁﬁz + 10 pn,
whence
2u2 ~ 2ropn - pn€’
Since g, > 0, we must have
2ro + \/4r202 + 8£2p,
Hn )
< 1o + 2ro + 2£./2p,
-2 4
and finally
' Uy < 10+ —g- 2. (2.27)
Again from the definition of z"+! in (2.13),
o1 = [z - 2]
< ||2" — z — an(Faz™)||
< pn+ an“Fnan
< Hn+pné, (2'28)

where we have used (2.26) and the fact a, < p,. If we use our estimate

of u, from (2.27) in (2.28) we get
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Bny1 < 1O~ ‘2‘\"2Pn+Pn£-
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Substituting for £ from (2.26) and using (2.23) we finally get

- V20n +2pn) T
'Pj < ro + ( n nl.
:s: HBn1 2 7
b f(r) r
< 10+ — - —
. 2 f(r)
ks, =7ro + r
N S 2
b
“ < r

since 0 < 1/2. Hence up4+1 < r. This completes our induction and also

the proof of the Theorem. |

2.29 Remark

?:; Our proof showing that {y"} converges by considering 2" = Pg(z") is
> -
’j patterned after [Baillon, 1975], who uses this technique to construct fixed :
‘ points of non-expansive maps. Notice also Baillon’s use of the Cesaro matriz
AN
"3 C where C;; = 1/i for j < i, while C;; =0 for 7 > 1.
Fiag ™
R
)
" 3. Application to NLCP(F)
25 We shall now show that the proof of Theorem 2.8 can be used to construct
1 1
oY) a solution of NLCP(F) when F is monotone and satisfies some regularity
.
- conditions such as the distributed Slater constraint qualification [Mangasar-
B
p.
o ian and McLinden, 1985].
g
By 3.1 Definition. Let F: D C R* — R" . We say that F satisfies the
%“" distributed Slater constrainst qualification (DSCQ) if there exist p points
".: 21, 22,---,,2F € D, nonnegative weighls Ay, A2, -+ Ap (Z, Aj = 1) such
1' _ﬁ‘
5" . " . . .
- that 2=3;Aj22 >0 end W =3 Aw! >0 where w = F(27).
403
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Mangasarian and McLinden have proved the following Theorem.

3.2 Theorem. Let F: D C R* — R, R% C D and suppose that F 1s

monotone and continuous on D. Assume that F satisfies (DSCQ). Let

v o max —zw+Zz\ z’wJ
1=1
C={z ¢ R, : 2z < wz+~}

where A;. 27, w?, 2 and W are as in (DSCQ). Then NLC P(F) is solvable
and has a solution z* such that wz* < w2 + 7.

We shall now show that the technique used in the proof of Theorem 2.8 ,
can be used to construct a solution of NLC P(F) guaranteed by Theorem |

3.2.

3.3 Theorem. Assume that F satisfies the hypotheses of Theorem 3.2 and
let C be the compact convex set as defined in that Theorem. Let z° = 0

and given z" find from z"+!

_F(z")

= P(_'{.’l'n

Let B be the Césaro matrix with

1 1 1
B, = ey Tttty ———, 0’ 0,... . S, =
" (Sn 25, nSy ) "

3

1
—
L -

J
and let {y"} = B({z"}). Then y" converges to a solution of NLCP(F) .
Proof

We shall give only a brief outline. Since {z"} and hence {y"} are both

bounded, {y"} has a limit point y*. One uses the monotonicity of F to

%

“hag! l



v 25 3 T W

& 2
Yelg
- show that

Lo (F(y*, T - y*) > 0, Vz € C.

_ Hence y* is a fixed point of the map =z — P¢ (:zr - F(z)) . However, Man-
o gasarian and McLinden show that any such fixed point satisfies wy* <
w2 + v. Hence y* solves NLCP(F) . One can now show that y* — y*
by considering the projection z" of z" on §(F). |}

3.4 Remarks

§ Do e
DI

N

L 1. It is easy to see that Theorem 2.8 may be extended to the nonlinear
:::;2 case if F is Lipschitzian. In this case |M|| is replaced by the Lipschitz
3 .
B3 constant of F in (2.10).

2. Unfortunately, from a computational point of view the fixed point ‘

\‘: methods in general, and those considered in this paper in particular, are not
o

2 __* viable methods. They are extremely slow and particularly so in the vicinity
(, of a solution point since the step sizes taken in such a vicinity are extremely
Taely small. Their slowness in part is also due to the fact that they do not utilize
L]
bl
L special features of the matrix M in the case of LCP(M, q). Their real
2
noey utility is perhaps in generating good starting points for fast Newton-type
Z‘C algorithms. However, the SOR methods are much faster than the fixed point
LI

"

§ methods even for generation of starting points.
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